First fundamental form

It is the Riemannian metric defined on a local chart $(u,v)$ of a 2-dimensional Riemannian manifold (surface). It is usually written as

$$ d \widehat{s}^{2}=E d u^{2}+G d v^{2}+2 F d u d v $$

where $(u,v)$ are coordinates for the surface. The term $d \widehat{s}^{2}$ is nothing, but represents the squared length of a vector given in these coordinates by the pair $(du,dv)$. Indeed the first fundamental form, being a tensor field, should be written

$$ E du \otimes du+F du \otimes dv+F dv \otimes du+G dv \otimes dv $$

It has a visual interpretation in @needham2021visual page 35. If we write the first fundamental form as

$$ \mathrm{d} \widehat{\mathrm{s}}^{2}=\mathrm{A}^{2} \mathrm{du}^{2}+\mathrm{B}^{2} \mathrm{~d} v^{2}+2 \mathrm{~F} \mathrm{du} \mathrm{d} v, \text { where } \mathrm{F}=\mathrm{A} \mathrm{B} \cos \omega . $$

then

Example

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: